Model Answers: Hard

1
The correct answer is \mathbf{C} because

- The image would be measured in the smallest resolution possible, so the image would be measured in mm
- The equation is:

WHERE: $1=$ IMAGE/DRAWING SIZE A = ACTUAL SIZE OF IMAGE M = MAGNIFICATION
(3) savemyexams

- The equation would rearrange to $M=/ / A$
- I would be r, measured in mm, which would need to be converted into $\mu \mathrm{m}$ by multiplying rx 1000 (see below) and then dividing by A, in this case $u, 6$ μm

- Substitution of the options would give the answer of \mathbf{C}
$\mathbf{A} \& \mathbf{B}$ are incorrect as the image would be measured in the smallest resolution possible and this would be mm.

D is incorrect as to convert units from mm to $\mu \mathrm{m}$ you need to multiply, not divide!
2
The correct answer is C because:

- Each 0.1 mm on the stage micrometer has 40 small divisions on the eyepiece graticule
- Convert 0.1 mm into $\mu \mathrm{m}=0.1 \times 1000=100 \mu \mathrm{~m}$
- Divide the length by the number of divisions to give the value for each small eyepiece division $=100 / 40=2.5 \mu \mathrm{~m}$
- A chloroplast is 4 small eyepiece divisions long
- This means the width of the chloroplast is $10 \mu \mathrm{~m}(4 \times 2.5 \mu \mathrm{~m})$

3
The correct answer is C because:

- Convert 1 cm into $\mu \mathrm{m}=10000 \mu \mathrm{~m}(1 \mathrm{~cm}=10 \mathrm{~mm}, 1 \mathrm{~mm}=1000 \mu \mathrm{~m})$
- Divide the size of the white blood cell into $10000=(10000 / 15)=666.67=667$
- White blood cell $=1.5 \times 10^{1} \mu \mathrm{~m}=15 \mu \mathrm{~m}$
- Convert 667 to standard form $=6.7 \times 10^{2}$
- Divide the size of the Streptococcus cell into $10000=(10000 / 0.75)=13333.3=13334$
- Streptococcus cell $=7.5 \times 10^{2} \mathrm{~nm}=750 \mathrm{~nm}=0.75 \mu \mathrm{~m}$
- Convert to standard form 1.3×10^{4}

4
The correct answer is \mathbf{B} because:

- The image has a length of 150 mm or $150000 \mu \mathrm{~m}$
- The actual size of the leaf is 7.5 mm or $7500 \mu \mathrm{~m}$
- Use the equation

WHERE: $I=$ IMAGE/DRAWING SIZE
A = ACTUAL SIZE OF IMAGE
$M=$ MAGNIFICATION

- $M=/ / A, M=150000 / 7500$
- The magnification is $\times 20$

5
The correct answer is \mathbf{C} because

- There are 40 eyepiece graticule divisions in 0.1 mm
- Convert 0.1 mm into $\mu \mathrm{m} \times 1000=100 \mu \mathrm{~m}$
- \quad Divide $100 \mu \mathrm{~m}$ by 40 to find the distance of 1 small division $=2.5 \mu \mathrm{~m}$
- Divide the size of the cell by the distance of 1 small division=12.5/2.5=5

6
The correct answer is \mathbf{B} because:

- Magnification will stay the same as the same eyepiece and objective lens are used
- The resolution will decrease; resolution decreases as the wavelength of the light increases (there is greater diffraction and therefore less ability to resolve fine details at wavelength increases)
A \& D are incorrect as resolution will not increase with increasing wavelengths.
C is incorrect as the magnification will not change.
7
The correct answer is \mathbf{D} because:
- There are 40 eyepiece graticule divisions in 0.1 mm
- Convert 0.1 mm into $\mu \mathrm{m} \times 1000=100 \mu \mathrm{~m}$
- Divide $100 \mu \mathrm{~m}$ by 40 to find the distance of 1 small division $=2.5 \mu \mathrm{~m}$
- Multiply the number of eyepiece divisions by $2.5=4 \times 2.5 \mu \mathrm{~m}=10 \mu \mathrm{~m}$
- Convert to standard form ($10 \mu \mathrm{~m}=1.0 \times 10^{1} \mu \mathrm{~m}$)

8
The correct answer is \mathbf{D} because:

- There are 40 eyepiece graticule divisions in 0.1 mm
- Convert 0.1 mm into $\mu \mathrm{m} \times 1000=100 \mu \mathrm{~m}$
- Divide $100 \mu \mathrm{~m}$ by 40 to find the distance of 1 small division $=2.5 \mu \mathrm{~m}$
- Multiply 100 eyepiece divisions by 2.5 to give the diameter $=250 \mu \mathrm{~m}$
- The radius is half the diameter of a circle $=125 \mu \mathrm{~m}$
- Use the equation for the area of a circle r^{2}

9
The correct answer is \mathbf{C} because:

- The total length of the stage micrometer is $50 \times 0.04 \mathrm{~mm}=2 \mathrm{~mm}$
- This fits into 15 small divisions so 1 division is $2 \mathrm{~mm} / 15=0.13 \mathrm{~mm}$
- The whole scale is 100 divisions so $0.13 \mathrm{~mm} \times 100=13 \mathrm{~mm}$

